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Research Goal 

•   Our goal is the automatic detection of small changes in broad 
 area surveillance. 

 - We work with low-resolution, staring, radiometric sensors, which are subject 
   to significant jitter. 

 - Frame rates range from 10 – 30 Hz; algorithms must run in real time. 

 - The magnitudes of the target changes are generally far smaller than the 
   contrasts in the imaged scene, so targets cannot be detected by simply 
   thresholding sensor frames. 

•   We have worked extensively with real-world data from a deployed,  
   operational sensor.  
  -  As well as video sequences from a range of unclassified sources. 
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Background Subtraction 

•   The standard approach to change detection involves some form 
 of subtraction: 

 - To detect new energy at time t, subtract from the frame taken at t an    
estimate of the “background” energy in the scene prior to this time. 

 - The background estimate may be a single prior frame or a more complex 
   function evaluated over a window of recent frames. 

•   If the current frame is not properly registered to the background,  
   large values in the difference frame may be caused by intensity  
 gradients in the scene, rather than true change.  

•   Thus, change detection in a high jitter environment is particularly 
 challenging!  
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Mis-Registration 

Crop 
Shift (r,c) + 0.5 
Add white noise 
Add target change 

Crop 
Add white noise 

Frame 1 Frame 2 Full Image 

The difference between two frames 
slightly out of alignment is dominated 
by scene gradients larger than the 
target change. 

When the second frame is interpolated 
back into alignment with the first, the 
target signal is blurred but stands out 
readily. 

The two difference frames are plotted 
in the same greyscale. 

Frame 2 – Frame 1, 
Unregistered 

Frame 2 – Frame 1, 
Registered 

target 
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Sensor Artifacts 

Bias Surface 
Frame 2 + Bias, 
Reduced Response 

Frame 1 + Bias, 
Reduced Response 

When Frame 2 is translated to register 
with the scene of Frame 1, the defects 
move out of alignment, creating large 
apparent changes in the difference 
frame. 

All such defects would have to be 
known and corrected for prior to scene 
registration. 

Difference Frame, 
Unregistered 

Difference Frame, 
Registered 

Artifacts in pixel 
space challenge 
solutions based on 
frame registration. 

A bias surface was 
added to the original 
frames, and reduced 
responsiveness was 
simulated in 5 pixels.  

target 
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Algorithm Approach 

•   Frame registration cannot solve the jitter problem in real time: 
 - Registration to a small fraction of a pixel is required, but this precision is    
   generally not feasible at high frame rates (10 – 30 Hz) for low-quality data. 

 - Even if jitter-induced offsets are known perfectly, all sensor artifacts (fixed    
   pattern noise, self-emission, non-responsive pixels) have to be corrected for  
   prior to frame transformation. 

•   Our approach does not require registration, instead relying on two 
 separate statistical models for variations in pixel intensity.  

-  The temporal model handles pixels that are naturally variable due to sensor 
 noise or moving scene elements, along with jitter displacements comparable to 
 those observed in the recent past. 

-  The spatial model captures jitter-induced changes that may or may not have   
been observed previously.  
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Normalized Differences 

•   For each pixel (k,h) at time t, we determine whether the observed intensity 
 is consistent with the spatial and temporal models. The decision is based 
 on simple normalized differences. 

•   Here, X represents the pixel’s intensity at time t, 
•   B is the current background estimate, 
•   S is a current standard deviation estimate ( based on data prior to t ). 

•   A large (absolute) value of Z(k,h;t) implies that the observed pixel 
 intensity is outside the range anticipated under the current model. 
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Decision Logic 

•   Normalized differences, ZSPATIAL and ZTEMPORAL are computed using 
 the same background B, but different standard deviation estimates. 

•   If min { | ZSPATIAL|, | ZTEMPORAL| } exceeds a fixed threshold, T1, the observed 
 value of pixel (k,h) at time t is deemed inconsistent with both models, and 
 a candidate change detection occurs. 

•   Depending on the characteristics of the target changes sought, 
 downstream logic may be employed to reduce the false alarm rate: 
   - Area filtering: Require detection in at least N connected pixels. 
   - Duration filtering: Require detection in at least M consecutive frames. 
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Background Estimation 

•   Subspace projection (SSP) is used to estimate the scene background. 
  - The general approach applied to the jitter problem has been around (at least)  
    since Barry and Klop, 1983. Many algorithms exist for adaptive subspace  
    estimation; some can update in real time. 

  - The goal is to capture the covariance structure of a sequence of frames in a  
     low-dimensional, orthogonal subspace. 

  - Newly-observed frames are projected into this subspace; projection residuals 
    are used to gauge change. 

  - To track gradual change in the scene (e.g., cloud motion), the subspace is  
     updated after each frame. The decay rate, β  [0,1], is tunable. 

Frame Number 

In
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ity

 SSP Background, 
β = 0.99 

Target change 
Jitter increases 

Pixel (240, 682) 
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Temporal Variances 
•   As the name implies, temporal variances are computed based on a recent 
 time window of projection residuals.  They are computed as follows: 

  1. Initialize with the sample variance over the first n frames, V(k,h;n). 
  2. For subsequent frames, update using: 

•   Forgetting factor γ  [0,1] determines how rapidly the filter 
 responds to new energy.   
  - The standard deviation estimate is not updated for any pixel (k,h) with  
    normalized  difference exceeding threshold T2. 

Frame Number 
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Pixel (240, 682) 
SSP Background 
 (β = 0.99) 

 6Temporal StDev 
        (γ = 0.99) 
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Spatial Estimation: Motivation 

•   As long as the jitter distribution is relatively stable, the temporal approach 
 to variance estimation provides reasonable scale factors. 
  - Used to normalize raw projection residuals. 

•   If the jitter distribution is non-stationary, temporal estimates of 
 pixel variance are inadequate: When jitter increases, large 
 numbers of false alarms occur along scene gradients. 
  - Sub-space projection alone does not solve this problem!  

•   Key Observation: You do not need to observe line-of-sight jitter to 
 predict which pixels will be influenced!  

•   This LDRD project has developed and matured a new mathematical 
 concept for pixel variance estimation. The “spatial” approach can 
 produce estimates that are robust to non-stationary jitter, based on 
 a single frame. 
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Bilinear Interpolation 

•   The method operates over a grid of conditional expectations in 
 the vicinity of each pixel. 

dr 
dc 

v1 v2 

v4 v3 

 

k 

k-1 

k+1 

h  h-1  h+1  

•   At time t-1, define:   
  v1 = value at pixel (k,h) 
  v2, v3, v4 = values at nearby pixels 

•   If we knew that jitter between times t-1   
 and t was exactly dr rows and dc columns,  
 we could use bilinear interpolation to  
 estimate the background at pixel (k,h)  
 at time t: 

•   If (dr, dc) is unknown, we can use its statistical distribution to estimate 
 the mean and variance of each pixel at time t as a function of  
 pixel values at time t-1 (or other previous frame). 

E(k,h;t) = v1 + dr(v3-v1) + dc(v2-v1) + drdc(v1+v4-v2-
v3)  
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Conditional Expectation 

h  h+1  

P(0,0) 

P(-1,0) P(-1,-1) 

P(0,-1) 

P(1,-2) P(1,1) 

P(-2,-2) P(-2,1) 

•   For each “cell” near (k,h), we use an 
 assumed jitter distribution to 
 compute:   

1) The probability of jittering into this cell at 
 time t, and: 
2) The expected pixel value (and its square) 
 at t, given jitter into this cell. 

•   After much algebra (see SAND 
 report), we apply the Law of Total 
 Probability to estimate the 
 variance of each pixel at time t. 

•   Estimates computed in this manner are surprisingly robust to mis-
 specification of the jitter distribution: They scale roughly linearly 
 with the jitter standard deviation. 
  - A good strategy is to set sigma conservatively (based on  
    the worst jitter expected) and re-scale on a per-frame basis. 
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Incorporating SSP and Spatial Variances 
Frame 2 + Bias, 
Reduced Response Raw SSP Residuals 

The principal subspace was estimated 
from 100 simulated jittered, noise-added 
versions of Frame 1 (with bias surface 
and reduced responsiveness). 

SSP residuals show less scene structure 
than the unregistered frame differences, 
and exhibit no sensor artifacts.  

After division by spatial standard 
deviations, the nine target pixels have 
values between 1.51 and 4.55, larger than 
ALL non-target pixels. 

Difference Frame, 
Unregistered 

Difference Frame, 
Registered 

target 

Normalized 
SSP Residuals Spatial StDevs 
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Video Processing Example 
•   Jittery video data were collected by student interns from Sandia 
 Dept. 6472 (Mobile Robotics).  

 - Brandon Cover, Robin Jones, Donald Kimmel. 
 - Camera mounted on a fixed tower looked at several different scenes (KAFB,  
   Four Hills Neighborhood) 
 - Each sequence consists of 4000 frames (100 training, 3900 test). 
 - Data are RGB but our method is currently limited to single-band (greyscale). 
 - Extension to multi-band data is under study. 

Parameter Settings: 
β = 0.99 Background Estimation: Decay rate  
γ = 0.99 Temporal Variances: Decay rate 
T2 = 3.0  Temporal Variances: Suppression threshold 
σ = 4.0  Spatial Variances: Jitter standard deviation 
N = 6 Area filter: Minimum number of connected pixels 

T1 = 6.0 Detection threshold 
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Run-Time Performance 

•   The video frames are each 700  475 = 332,500 pixels. 

  - With non-optimized research code, video processing runs at 6 frames per  
    second (FPS). 

  - For a sequence of smaller frames (200  380 = 76,000 pixels), a processing rate 
    of 40 FPS can be achieved. 

•   Parallel processing will enable real-time (30 Hz) performance for 
 large frames. 

  - Divide the frame into multiple blocks, overlapping along the edges.   

  - Run background suppression and detection on each block in parallel. 

  - Use appropriate logic to combine detections along block boundaries. 
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Summary Results: Frames 101 - 650 

I-40 Traffic 
Pedestrians 

Bobcat 

Jitter is non-stationary, but nominal (within 1-3 pixels) for the first 550 
test frames. Many targets in motion are detected; some are very difficult 
to discern. Few false alarms occur with combined processing. Spatial-
only detections include some noise-induced detections, while many 
false alarms caused by jitter occur for temporal-only detection. 

Detections: Dual Model 

Pixels shown in 
red had detection 
in at least one of 
the 550 frames. 

Detections: Spatial Model 

Detections: Temporal Model 

False Alarms 
circled 
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Detection Video: Frames 101 – 650, Nominal Jitter 
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Summary Results: Frames 651 - 1200 

The jitter environment is more challenging (5+ pixels) for the next 550 
frames. Target detection drops (largely due to increasing pixel standard 
deviations), and there are more false alarms. However, the system still 
finds many of the legitimate targets moving through the scene. 
Detection with temporal variances only fails completely. 

Pixels shown in 
red have detection 
in at least one of 
the 550 frames. 

Detections: Spatial Model 

Detections: Temporal Model 

Detections: Dual Model 
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Detection Video: Frames 651 – 1200, High Jitter 
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Summary and Path Forward 
•   The change detection algorithms developed under this LDRD 
 project show tremendous potential. 

 - Spatial variance estimates enable robust change detection, even in challenging 
    jitter environments. 

  - A patent application has been filed (Simonson and Ma). 
  - A two orders of magnitude reduction in the false alarm rate (at fixed target  
    detection percentage) has been achieved for challenging data from an  
    operational sensor. 

  - Initial transition expected within a year. 

•   Work will continue under funding from several sources:   

  - Development, test, and integration of algorithm into baseline operational  
    software under external sponsorship. 

  - FY2010 – 12 LDRD project on improved tracking of closely-spaced and  
    maneuvering targets (Principal Investigator Tian Ma)   

•   More opportunities sought for current or future systems! 


